THE CHALLENGES FACING FUEL CELLS

Heading

There is a lot of hype right now about the “Bloom Box.” Google installed one, Adobe installed one, and Bloom Energy has an active sales force hitting up the Fortune 500. So what is a Bloom Box and what does it mean for the future of the energy world?

100+
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
2
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
50%
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

What’s a Rich Text element?

The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.

Static and dynamic content editing

A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

How to customize formatting for each rich text

Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.

THE CHALLENGES FACING FUEL CELLS

Voltage Optimization

There is a lot of hype right now about the “Bloom Box.” Google installed one, Adobe installed one, and Bloom Energy has an active sales force hitting up the Fortune 500. So what is a Bloom Box and what does it mean for the future of the energy world?

100+
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
2
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
50%
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Voltage optimization is all the rage these days. Children and retirees alike cannot stop raving. Grocery stores, pizzerias, and major retailers can’t keep the shelves stocked.

Or maybe not. Since it is, in fact, a relatively obscure energy modulating solution. And though it has recently begun being marketed as an energy efficiency panacea, odds are you have probably not heard of it—yet.

Voltage optimization is the process by which the voltage entering a piece of equipment is fine-tuned (usually reduced). A number of technologies of varying degrees of sophistication deliver voltage optimization: many are simply adjustable transformers that step down the voltage, just as your utility reduces your voltage on your nearby poles. In theory, voltage optimization lowers energy use, because of the equation:

  • P = I * V   where
  • P = Real power used by a device measured in Watts
  • I = Current used by a device measured in Amps
  • V = Voltage used by a device measured in Volts

If we make V lower, P decreases as well. Saving Watts. Saving Power.

Sounds great. Of course, so do the best synthesized bird calls. That doesn’t make them real.

While voltage optimization solutions can deliver energy savings, principally for certain kinds of motors, in many cases their value has been grossly inflated by marketing efforts. Voltage optimization advertisements saying you’ll reduce carbon emissions in your home by 10% are in most cases simply greenwashing.

What is greenwashing? It is the practice of marketing processes or technologies as environmentally-beneficial when in fact their benefits are negligible or non-existent. The Greenwashing Index through the University of Oregon tracks some corporate products and advertising that are suspected of greenwashing.

But general consumer goods companies are not the only ones that greenwash their products. Much greenwashing relates to energy efficiency. How to properly verify energy efficiency efficacy is well-established but that doesn’t mean consumers can do it or that they know to ask for it.

Some products that claim to deliver energy efficiency are actually just energy reductions without the efficiency. Doing the same thing more efficiently does not sacrifice an end product (light levels stay the same, the amount of cooling your AC provides remains the same, etc.), energy reductions not gained through energy efficiency might sacrifice operations or comfort. Energy reductions are fine where appropriate – many commercial office spaces in the U.S. have lighting levels well in excess of modern recommended amounts and are therefore excellent candidates for removing 10-40% of the lamps – but if light levels are already appropriate, reducing the number of lightbulbs may not be a good idea.

If I reduce the voltage going to your light bulb, it receives less power. But if it receives less power, it produces less light. If you do not mind lower levels of light, no problem. But then you could have just bought a lower wattage light bulb instead. Voltage optimization is usually no more than a simple energy reduction. By contrast, you could buy a 20-Watt incandescent light, but it would produce about 25% of the light as a 20-Watt compact fluorescent light. Same power, greater usefulness: that is energy efficiency.

In many cases, voltage optimization delivers temporary power reductions. But in many of these cases, these power reductions do not actually provide overall energy savings because of the nature of the energy consumption.

Some specific cases will help illustrate this point:

  • If you reduce the voltage to a 2000 W space heater by 10%, so that it now only uses 1800 W, it will also produce less heat. You will need to run it longer to give you the desired effect though, so there are no real energy savings.
  • If you reduce the voltage to your hot water kettle, it will take longer to boil. There are no shortcuts to the specific heat of water: it needs 1 BTU of energy to increase its temperature by 1 degree Fahrenheit. Reducing the voltage just means the kettle will need to draw less current for a longer time.
  • If you reduce the voltage to your refrigerator, it will run the compressor for longer. You will not save energy, because your refrigerator has to produce a set point temperature. There are no shortcuts to thermodynamics.
  • If you reduce the voltage to a motor outside its recommended 10% tolerance you will degrade the motor’s operation. The U.S. Department of Energy has helpful papers on this topic. If the motor is fully loaded, then even on a small voltage drop the motor will draw more current to meet the load. This will cause it to run hotter, shortening its life. A voltage drop will also reduce torque and motor efficiency (see p. 385 in this IEEE article for a more thorough treaterment). Not good at all. If you reduce voltage for a motor serving a variable load, there will be some energy savings (this happens because of the relationships between slip, load, efficiency, and voltage and the fact that magnetizing losses are lower at decreased voltage; the short explanation here is the slip at a lower load is less, which actually is more efficiently served by a lower voltage, so in this regime a lower voltage will still meet the load requirements while reducing magnetization losses. Therefore, the optimal voltage decreases as load decreases). Nonetheless, a Variable Speed Drive is still widely considered a more robust and more cost-effective solution for variable loads.

As you can see, the devil haunts the details of each application. The above is only a summary. The United Kingdom’s Ministry of Defense (MoD) conducted a wide-scale review of the energy savings opportunities resulting from Voltage Optimization. Their conclusions broadly match with those of our team.

Voltage optimization has been a major topic in the United Kingdom in particular because of reports of systemic overvoltage.

This results partially from 1995 EU regulations that required voltages to come down to 230 Volts. In many areas of the UK, this did not occur.

As a result, reducing the voltage that enters homes and offices offers some savings opportunities for consumers. But because transformer losses in voltage optimization equipment are still a few percent, a better solution would be to reduce voltage levels fed into the grid and, especially, to adjust the step-down equipment along the grid so that it produces the targeted 230 Volts. Skeptics of voltage optimization in the UK abound.

In a normal grid, proponents of voltage optimization argue it can reduce energy consumption by as much as 10%. It can. In select circumstances: mostly in industrial concerns, sometimes in commercial concerns, and almost never in homes. The main advantage of voltage reductions on the grid are temporary power reductions when the grid is stressed, not overall energy savings.

At Carbon Lighthouse, our excitement for technologies like voltage optimization is muted partly because too often voltage reducers are simply a greenwashed product.

More importantly, voltage optimization, while it has its limited place, does not bring us closer to a more sustainable planet. Compact fluorescent lights cut the lighting energy needed in a home by 75% but still deliver the light we need. High efficiency washing machines use less energy and less water while providing the same clean clothes. Variable speed drives cut motor energy by 20-80% and deliver the power we need to pump chilled water and ventilate our buildings. Drawing window blinds on a hot day reduces heat load on our buildings. These are the kinds of changes that bring us closer to where our planet needs to be.

Not all that glistens is green.

End Note

Voltage imbalance in a motor can be a serious problem, causing substantive reductions in energy performance. For such motors it would be beneficial to undertake voltage correction (which frequently can only be solved not with a silver bullet “voltage optimizer” but rather with a comprehensive analysis of the building’s electrical one-line diagram, ground faults, 120 Hz vibration issues, and faulty power factor correction equipment).